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INVERSE LAMINAR BOUNDARY-LAYER PROBLEMS 
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SUMMARY 
An inverse method is presented which accurately determines the pressure distribution for assigned wall shear 
in a two-dimensional, laminar, incompressible boundary layer. The method reformulates the mechul function 
scheme of Cebeci and Keller to produce a stable solution in the marching direction and to  increase accuracy in 
the normal direction. In the reformulation a modified pressure gradient parameter variation in the normal 
direction is used in conjunction with three-point backward differences for streamwise derivatives and fourth- 
order accurate splines for normal derivatives. The resulting spline-finite difference equations are solved by 
Newton-Raphson iteration together with partial pivoting. Numerical solutions are presented for self-similar 
and non self-similar flows and compared with published results. 

KE\I WORDS: Laminar Boundary Layer Splines Incompressible 

INTRODUCTION 

One method for the solution of the inverse two-dimensional, laminar boundary layer problem with 
assigned wall shear is the mechul function scheme of Cebeci and Keller.' In this method, the over 
determined property brought about by the extra boundary condition is eliminated by specifying an 
extra differential equation governing the normal variation of the pressure gradient parameter. As a 
result, the system is solved as an extension of the standard boundary-layer problem. For the self- 
similar case the method is very accurate and efficient but in the non self-similar case it suffers from a 
weak instability. The instability appears as a disturbance that develops in the far field and 
propagates towards the wall, ultimately destroying the solution as it is marched downstream. 

In this study, the mechul function method of Reference 1 is reformulated to eliminate the 
instability in the non self-similar case and the  discretization is changed to increase the accuracy for 
a given nurnber of mesh points. In the original formulation the Keller box method, which was used 
to discretize the differential equations, appears to be the culprit for producing the instability. The 
reason is that owing to its centering in the middle of the mesh cell it is not fully implicit. The new 
formulation uses three-point backward differences to approximate streamwise derivatives and 
fourth-order accurate splines for normal derivatives. The fully implicit method leads to a 
completely stable procedure for the non self-similar case. 

The resulting spline-finite difference equations are solved by the Newton-Raphson technique, 
as in Reference 1. Because splines are used, partial pivoting is necessary to prevent the buildup of 
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roundoff errors during the L-U decomposition solution of the block matrix system at a particular 
streamwise station. The use of splines also required a slight recasting of the extra differential 
equation on the pressure gradient parameter. 

GOVERNING DIFFERENTIAL EQUATIONS 

The governing equations in this problem are those for a two-dimensional, incompressible, laminar 
boundary layer. Using standard similarity variables the equations reduce to the following single 
equation for the pseudo self-similar stream function f :  

(1) f,,, + ff , ,  + P(1 - f ; )  = 25(f,fE, - fqqfJ, 
where the subscripts denote partial differentiation with respect to the subscripted variable, 5 is the 
streamwise variable, q is the similarity variable in the normal direction, is the pressure gradient 
parameter defined by 

and u, is the velocity at the edge of the boundary layer. The boundary conditions are as follows: 

where for simplicity q,, the location of the outer edge of the boundary layer, is taken as a suitably 
large constant. Thus the computational domain is the rectangle 0 < 5 < t,,,, 0 < q < qm. 
Equations (1) and (3) define the standard problem. 

For the inverse problem, the wall shear is specified as 

f,&, 0) = S(5), 5 z 0. (4) 
This leads to an over determined system in equations (I), (3)  and (4). To complete the formulation of 
the mechul function scheme, the pressure gradient parameter is written as 

P(5) = P(5? 4, 
and the following derivative condition is introduced:’ 

The pressure gradient parameter is thus determined by solving equations (1) and (5) with boundary 
conditions ( 3 )  and (4). 

For self-similar flows, f =,f(q), from which it follows that the pressure gradient parameter and 
the boundary conditions are also independent of <. The governing equations thus reduce to 
ordinary differential equations, viz. 

f”’ + ff” + p(1 - f’2) = 0, 

p’ = 0, 

where the prime denotes differentiation with respect to q. 
In the course of the present study, the original derivative condition on 6, equation (5),  when used 

with the fourth-order spline relation S1(4, 0), was found to produce a singular matrix in the L-U 
decomposition solution of the resulting block tridiagonal system (the spline notation used 
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throughout this paper is the same as that in Reference 2). When a constant normal stepsize is used, a 
singular block matrix occurs on the diagonal during the forward substitution step which cannot be 
eliminated by rearranging the equations. The singularity is due entirely to the form of the spline 
relation S'(4,O). 

To eliminate this singularity, the requirement on the normal pressure gradient parameter was 
changed to 

Then, the condition 

is enforced only at the wall with two-point spline boundary conditions. Using the alternate fourth- 
order spline relation S2(4,0) for equation (8) produces a non-singular matrix for constant or 
varying stepsize while still forcing the pressure gradient parameter to be independent of y. This 
modification introduces no additional equations on the solution besides the enforcement of 
equation (5) at the wall. 

SPLINE-FINITE DIFFERENCE EQUATIONS 

As originally formulated in this study, equation (1) was written in first-order form so that together 
with equation (5) all y-derivatives could be represented by the spline relation S'(4,O). In the 
modified formulation, where equation (8) replaces equation (S) ,  equation (1) is still written in first- 
order form while equation (8) remains unchanged. Thus the governing system of equations is 

f, = u, 

P,, = 0, 

T v  = P(u2 - 1) - f z + 2t(uur - z f,,, 

u, = 7, 

and the boundary conditions become 

The <-derivatives in equation (9d) are approximated by the following generalized backward 
differcnce formula for constant stepsize At:  

For interior grid points, the three-point, second-order accurate version of equation (1 1) is used, for 
which 

a=%,  b = - 2  andc=$ ,  
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l f= f ,  ' 
P = u, 
r = z ,  
la = P, 
LB = P,, , 

whereas for the second downstream station only the two-point version is used where 

a=1,  h = - 1  and c=O. 

Thus applying equation (11) to ug and f g  in equation (9d) yields 
2 (z V h J  ). . = p. 1.J .(u2 1,J ' - 1 )  - f i ,  j z i ,  j + Ui(UUi f j  + bu& 1 , j  + cui- 2, j )  

-2ai(afi,jzi,j+ bfi-i,jzi,j+cfi-Z,jzi,j) 

where 

,. 

Since splines are to be used in the 11-direction, the following spline derivative approximations are 
introduced: 

l;,j= Pi,j(u;j- 1)-(2acl,+ l ) f i , j z , j -2a , (~ , f , - , , j+  cfii-2,j)zi,j 
( 144  + ai(auZj+ bU,2_,,j+ cui-2,j). 2 

Equations (14) contain the eight unknowns f ,  u, z, P, lf, I, Er and Lp. Hence to close the system 
four tridiagonal spline relations are needed. We use S'(4,O) to relate lf to f ,  1" to u and 1' to z; then 
S2(4, 0) to relate La to /I. The expressions for these splines are2 

Sl(4,O): + ( 1  + 0)21J  + 02P J - 1  

1 2 1 1 + 2 a  0 - 1  
-____ g j+  1 +-(I + aI3gj - a2(2 + 4 g j -  1 , l+crh j  [ rJ a 

- 

and 

a 2 + a - l  
120 

( T ~  + 4 0 ~  + 4 ~  + 1 
12a 

1 + (T - a2 
S2(4,0): q + 1 +  L7+ 12 LT- 1 

where 

Equations (14a) to (14d) can be used to eliminate lf, l", La and 1' in the four tridiagonal spline 
relations, thus reducing the number of unknowns at ( i , j )  to four-f, u, p and z. The resulting 
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tridiagonal equations are (subscript i understood) 

a2zj-, +rr1zj+zj+, =63u,-, +64Uj+85Uj,,, 

d8pj- 1 + 878, + 86pj+ 1 = 0, 

a2[(cl + p)uz - p + c2 f z + E l j Z l j -  1 + @ l [ ( C l  + p)uz - p + c2 f Z  + E 7 i j Z l j  
+ [ (cl + p)u2 - ,8 + c2 f z + E3j~]j+ 1 = - 02~4j -  1 - (T k 4 j  - c4j+ 1. ( 174 

The coefficients in equations (17) can be found in Reference 3. 
The block tridiagonai relations given by equation (17) form a non-linear system relating f ,  u, z 

and p. These equations are linearized for solution by the Newton-Raphson technique. If 
superscript (a) denotes the iteration number associated -with the spiine-finite difference equations 
at station i, and F denotes one of the four unknowns ,f, u, z or p, then the Newton iterate is given by 

(18) 

where SF'") is assumed to be a small correction. The linearized system is obtained by substituting 
equation (18) into equations (17) and neglecting squares of 6F("', then writing the result in terms of 
the corrections. The linearized block tridiagonal correction equations at line i are 

F'" + 1 ' = F'"' + 6F'"', 

- ci3S fj- 1 + (r26Uj- 1 - 646 f j  + 0 1 6 U j  - 656 fj+, + 6 U j +  1 = Lj,  ( 194 

-636Uj-1 + 0 2 6 Z j - 1 - 8 4 6 U j + c 1 1 6 Z j - 6 5 6 U j + 1  +6Zj+1 = P j ,  (19b) 

- 686pj- 1 - 676pj - 666pj+ 1 = Qj (19c) 

( 194  

where aj, Bj,  Dj, Rj ,  p j  and Gj are coefficients obtained from the linearization of the equations (see 
Appendix A of Reference 3). 

These block tridiagonal equations can be written in the following matrix form ( i  subscript 
understood): 

( r 2 [ A S f  + B6u + D6z + Gspl j -  1 + a1 [AS f + B6u + E6z + GSplj 
+ [A6 f + B6u + E6z + G6P] j +  = Tj, 

BjZj- 1 + AjZj + CjZj+ 1 = Rj 

for 2 < j < N ,  where N is the number of intervals in and 

A j ,  Bj ,  C j  are 4 x 4 matrices whose elements are obtained from the four correction equations, and 
Rj is a four-component column vector of known quantities obtained from the right-hand sides of 
the correction equations. 

The boundary conditions at the wall in correction form, at streamwise station i, are 
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One additional condition must be provided to close this system. The two-point spline relation, 
given in Reference 2, is used: 

h2 P h: 
p 2  - p1 - -(lz + l ! )  + -(LB, - L!) = 0. 

2 12 

This relation allows the original pressure gradient condition to be enforced at the wall. From the 
governing equation, Lf = 0, and enforcing the original gradient condition 18 = 0, equation (23) 
reduces to the simple relationship p2 = PI,  which in correction form is 

w 2  = w,. (24) 
The linearized block system for the corrections at the wall can then be written in the following 
matrix form: 

A121 + CiZ2 = R1 

with Z j  defined by equation (21). 
The far field boundary condition at station i is 

6uN+ 1 = 0. (26) 
Three additional conditions are required to close this system. Two-point spline conditions are 
again applied. For one relation, the following is used: 

Differentiating equation (27a) with respect to y yields 

Differentiating once more gives 

h N +  1 h i +  1 
z N +  1 - Z N  - -(EL+ 1 + lh) + p ( L ; +  1 - L;) = 0. 

2 12 

Assuming the second-order terms to be negligible compared to the lower-order terms, the above 
equation simplifies to 

Equations (27) provide the three additional conditions required for the far field. These equations 
are linearized and solved for the correction terms as before and then written in the following matrix 
form: 

BN + I Z N  + A N +  ~ Z N +  I = R N +  1 .  (28) 
The block tridiagonal system formed by equations (20), (25) and (28) is solved using standard 

lower-upper (L-U) decomposition. Partial pivoting is used within the 4 x 4 blocks to prevent the 
buildup of roundoff errors. A block tridiagonal solver using subroutines developed by Blottner? 
which perform the partial pivoting, is used to solve the matrix equations for the corrections at each 
iteration. 

The Falkner-Skan equations are obtained by setting < equal to zero in equations (1) and (8): 
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The boundary conditions given by equations (3)  and (4), with no dependence on 5 ,  are used. The 
solution of this ordinary differential equation with splines approximating all q derivatives is used as 
the starting solution for the non self-similar case. The scheme is derived so that the Falkner-Skan 
solutions for positive and negative wall shear can also be computed. 

As an initial guess for the starting solution, a fourth-order Pohlhausen-type polynomial is used 
to approximate (f, u, z, ,8)j at 5 = 0. The Pohlhausen polynomial for the velocity is of the form 

u = b[ + cC2 + dC3 + eC4, 
where 

C = l  7 u = 4r) ,  
r m  

and the constants b, c, d and e can be found by applying the boundary conditions and the ordinary 
differential equation. The stream function and the shear can be found by integrating and 
differentiating equation (30) respectively. By substituting into the differential equation, equation 
(29a), an approximation for P is obtained in the form 

6Sqm - 12 
r m  

P =  2 . 

Once the starting solution is determined, the second streamwise station must be treated in a 
special way for the non-similar flow case. With only one previous streamwise step known, two- 
point backward differences are used to approximate the 5 derivatives. Past this station, three-point 
backward differences are used. The solution profile at the last calculated station is used as the first 
approximation at the new station. 

SELF-SIMILAR FLOW SOLUTIONS 

Computations for self-similar flows were performed for positive and negative wall shears. For all 
positive wall shears, the solutions were obtained independently for a specific shear. For the 
negative wall shears, the sensitivity of the method to the initial guess required calculating solutions 
consecutively for small steps in shear and using the previous solution as an initial guess for the next 

Table 1. Comparison of positive wall shear solutions for self-similar flows (v = iteration number). q m  = 6 

REFORMULATED 

,40032 

,31927 

.23974 

.I9078 

.I2864 

,05517 

MECHUL FUNCTIOF 

0.140003 

0.160008 

0.18001 9 

0.198837 

:EBECI & KELLFR INONLINEAR EIGEN 

0.10021 0.10017 

0.14019 0.14024 

0.16019 0.16016 

0.18020 0.18025 
0.19524 0. I9528 

EME - 
U 

SMITH 

0.18 
0.195 

0.198834 
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Table 11. Comparison of reverse-flow solutions for self-similar flows. q m  = 9 

I I REFORMULATED I CEBECI& KELLER I N O N L I N E A R  E I G E N - I  STEWARTSON I 

0.152116 

-0.141 0.132974 
0.15234 0.15416 0.15 
0.13412 0.13545 

profile. The solution process was begun for zero wall shear, S = 0, and the shear was decremented 
by 0.01 or 0.05. 

Solution comparisons are made between the present reformulated scheme, the original mechul 
function formulation1 and the non-linear eigenvalue scheme.' This method was developed by 
Keller and Cebeci before the mechul function scheme. The eigenvalue method solves the inverse 
problem by treating the unknown pressure gradient as an eigenvalue. Then, two iteration 
procedures, an 'inner' and an 'outer' iteration, are performed. The inner iteration solves the 
governing equations for a standard problem assuming b is known. The inner solution is then used 
with Newton's method to determine the pressure gradient parameter from the variational 
equations in the outer iteration procedure. The variational equations are the standard boundary 
layer equations differentiated with respect to b. 

For positive wall shear computed with the reformulated scheme, a normal stepsize of Aq = 0.1 5 
is used with q m  = 6; for reverse flow solutions and separation (S = 0), Aq = 015 and qm = 9 are 
used. The criterion used for convergence is 

c=Ip("+1)-p(") I  < 10-8. 

Cebeci and Keller applied a similar convergence test to the original scheme as well as the 
eigenvalue scheme with E < 10-4.1,5 

The results of the self-similar flow calculations with positive wall shear are given in Table I. 
These results are compared with those of Smith.6 Comparison shows the values from the 
reformulated mechul function scheme closely approach those of Smith. All cases converged 
quadratically. It should be noted that the greater number of iterations required for convergence 

5 

4 
7 

3 

2 

1 

'0 0.2 0.4 0.6 0.8 l.C 

5 

4 
7 

3 

2 

1 

'0 0.2 0.4 0.6 0.8 l.C 
U U 

Figure 1. Boundary-layer velocity distributions for self-similar flows 
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with the reformulated scheme is the result of the present more severe convergence criteria. 
The results of the reverse flow computations are presented in Table 11. These results are 

compared with those of S t e ~ a r t s o n . ~  Again, the agreement is good. Here, the number of iterations 
decreases appreciably with the use of consecutive calculations. Figure 1 shows examples of both 
positive and negative wall shear velocity profiles. 

NON SELF-SIMILAR FLOW SOLUTIONS 

Non self-similar flow computations were performed using two linear wall shear distributions. The 
first case, given by 

S ( 4 )  =: 0'4696(1 - 4 )  

Table 111. Computed pressure gradient parameter p as a function of 5 for the wall shear distribution: 
S( 5) =: 0.4696 (1 - 5). 7, = 6 

0 

.I0 

.20 

.30 

.40 

.% 

.60 

.70 
.80 
.90 

REFORMULATED 

MECHUL FUNCTION 

-5 
-0.000004 
0.043781 

0.084248 
0.121154 

0.154257 
0.183241 
0.207657 

0.226840 
0.239734 

0.251269 

- 
V - 
4 
4 

4 
4 

4 

4 
4 

4 
5 
8 __ 

CEBECI & KELLER 

F C H U L  FUNCTIOI 

-D 

0,001 79 
0.04535 

0.08559 
0.12231 

0.15529 
0.18420 

0.20857 
0.22685 
0.22378 
0.16835 

__ 
V - 
3 
3 
3 
3 

3 
3 

3 
3 
3 
3 - 

NONk INEAR EIGEN 

VALUE SCHEME 

-P 
0.00179 
0.04532 

0.08553 
0.12225 

0.15522 
0.18408 
0.20845 

0.22761 
0.24041 
n. 24479 -- 

__ 
V 

_c 

3 
4 

5 
5 

5 
5 
5 
4 
4 
3 

E l  GENVALUE 
;CHEME WITH 
? I  CHARDSON 
EXTRAPOL. 

a 
0.00003 
0.04383 

0.09068 
0.12113 

0.15018 
0.18308 
0.20747 

0.22664 
0.23940 
0.24376 

Table IV. Compared of /r as a function of 5 with varying qajr for the wall shear distribution: S ( [ )  = 
0.4696(1 - 5) 

E 

0 

. I0  

.20 

.30 

.40 

.50 

.60 

.70 

. 80 

.90 

1.00 

1.10 

MECHUL FUNCTI Oh 

WITH qw= 6 

-0 
-0.000004 
0,043781 
0.080248 

0.121 154 
0,154257 
0.183241 

0.207657 
0.226800 

0.239734 
0.251269 
- 
- 

- 
V - 
4 

4 

4 
4 

4 
4 
4 
4 

5 
a 
- 
- 

___ 

MECHUL FUNCTION 

WITH q,= 9 

- B  

n ,043780 

-0.OO0004 

0.084247 

0.121152 
0,154254 
0.183234 
n.207637 
n.226777 

0.239550 
0.243963 
0.235625 

0.207213 

- 
V 

4 

4 
4 

4 
4 
4 

4 
4 

4 
4 

5 
7 

- 
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Table V. Computed pressure gradient 

K. C. KAUFMAN AND G. H. HOFFMAN 

as a function of t for the wall shear distribution: S( t )=  
1.23259(1 -5) .  9, = 6  

e 
0,999993 
0.760840 
0.542190 
0.344178 

0.167607 

0.012386 
-0.120291 

-0.228585 

-0.308985 
-0.352992 

-0.366964 

- 

c 

___ 
0 

.lO 

.20 

.30 

.40 

.M 

.60 

.70 

.80 

.90 

.95 

U 

4 

4 
4 
4 

4 
4 
4 

4 
4 

7 

10 

U 

4 
4 

4 

4 
4 
4 

4 

4 
4 

7 

NONLINEAR 
EIGENVALUE 
SCHEME 

5 

B 
0.999993 
0.760840 

0.542190 
0.344378 
0,167607 
0.012386 

-0.120289 

-0.228577 
-0.308911 

-0.353486 
-0.339311 - -  

0.98862 
0.75308 
0.53733 
0.34164 

0.16634 
0,01203 
0.12017 

0.22837 

-0.30877 
-n.35302 

-0.45517 

EIGFNVALUE SCHEME 
\nil RICHARDSON 

EXTRAPRATION 

e 
0.99938 
0.76053 
0.54213 
0.34445 
0.16172 
0.01248 

-0.12017 

-0.22844 

- 0.30856 
-0,35232 
-0.35427 

has a zero pressure gradient at t = 0, indicating a flat plate flow. The second case, given by 

S ( < )  = 1*23259(1- 5) 
has a pressure gradient parameter of unity at 5 = 0, indicating a stagnation point. Both cases 
approach zero shear at t = 1, yielding separation. Both cases were computed with values of q ,  = 6 
and q m  = 9. For all non self-similar computations, a streamwise stepsize of A t  = 0-05 was used, 
with Aq = 025. The convergence criterion applied is identical to that used for the self-similar cases. 

A comparison of results for the first case is given in Table 111 and IV. Table 111 compares the 
results with those of References 1 and 5. The agreement with the Richardson extrapolation results 
obtained from the eigenvalue scheme values is quite good. The numerical instability experienced by 
the original formulation does not appear in the present method. It was found that with q ,  = 6, the 
solution would not converge at streamwise stations near separation. With q m  = 9, the solution was 

Table VI. Comparision of as a function of 4 with varying q m ,  for the wall shear distribution: S = 

c 
~ 

0 

.lo 

.20 

.% 

.40 

.M 

.60 

.70 

.80 

.90 

1.00 

1’23259 ( 1  - 5 )  

WITH qm= 6 WITH ?J-= 9 

B 
0.999993 
0.760840 

0.542190 
0.344378 
0.167607 
0.012386 

-0.120291 

-0,228585 
-0.38985 

-0.352992 
__ 

__ 
U - 
4 
4 

4 
4 
4 
4 

4 
4 
4 

4 

5 - 
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marched through the separation point at < = 1. Once past separation, however, the scheme quickly 
became unstable and the solution failed to converge. Table IV compares present results for the first 
case with q m  = 6 and q ,  = 9. 

A comparison of results for the second case is given in Tables V and VI. In Table V, the results are 
compared with results from Reference 5, since no results are available for this case with the original 
mechul function formulation. The agreement with the Richardson extrapolation of Reference 5 is 
again very good. As with case one, the results could be obtained through separation only with 
q ,  = 9. Table VI compares the results for the two values of urn.  

For all numerical cases presented, the normal stepsize, Aq, is kept constant in order to compare 
with References 1 and 5. Non self-similar cases were also computed, using a geometric progression 
for q, with the stepsize ratio oj = 1.1. Using this geometric progression, both non self-similar cases 
proceeded through separation with q m  = 6. The results obtained are identical with those produced 
with a constant stepsize and qm = 9. Using the geometric progression also allowed the number of 
normal steps to be halved without decreasing solution accuracy. 

CONCLUSION 

An accurate, stable and escient method has been developed to determine the pressure gradient 
distribution on a body surface in a laminar boundary layer with wall shear specified. The 
reformulated mechul function scheme presented here does not exhibit the numerical instability 
experienced with non self-similar type flows in Reference 1. The method is fully implicit and is 
applicable to Falkner-Skan as well as non self-similar flows. Reverse flow self-similar solutions 
have also been computed but are found to be very sensitive to the initial solution guess. 

The reformulated scheme uses fourth-order splines to approximate derivatives in the normal 
direction and three-point backward differences for the streamwise derivatives to provide the 
necessary stability as the solution is marched downstream. The buildup of roundoff errors is 
prevented by the use of partial pivoting within the 4 x 4 blocks of the linearized system of spline- 
finite difference equations. Accurate results have been found with the scheme for both self-similar 
and non self-similar cases, all of which exhibit quadratic convergence. The non self-similar 
calculations were observed to proceed slightly beyond separation with constant stepsize in q and 
qm = 9, or with a geometric progression and q ,  = 6. 
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